If it's not what You are looking for type in the equation solver your own equation and let us solve it.
165=5x^2
We move all terms to the left:
165-(5x^2)=0
a = -5; b = 0; c = +165;
Δ = b2-4ac
Δ = 02-4·(-5)·165
Δ = 3300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3300}=\sqrt{100*33}=\sqrt{100}*\sqrt{33}=10\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{33}}{2*-5}=\frac{0-10\sqrt{33}}{-10} =-\frac{10\sqrt{33}}{-10} =-\frac{\sqrt{33}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{33}}{2*-5}=\frac{0+10\sqrt{33}}{-10} =\frac{10\sqrt{33}}{-10} =\frac{\sqrt{33}}{-1} $
| 2(y−66)=38 | | -2k-6=2k+6 | | (4x-1)=(5x-14) | | `6x+30=42` | | 62=6g+2 | | 5(2x–3)=55 | | x+30=115 | | 6(2x−7)=−8x−32 | | 3n=33* | | 100+65+x=180 | | 2k-6=2k+6 | | 17=j/3+15 | | 2(x-1)=-27 | | 6x+72+19x+46=180 | | x^2+23x+150=0 | | –8+9g=8g | | 2x+18+6x-18=90 | | h/6-5=2 | | 19x+46+6x+72=180 | | χ²-8x+16=1 | | (5n+25)=(3n+27) | | 20x+125=15x-25 | | 2d^2+14d-36=0 | | -5x+4=-2x=16 | | 7t-78=70 | | -8h-10=-7h | | A=5x+12B=2x+24 | | 2w+7=w | | 2w+7=2 | | 4.7x=-3.2 | | 2x+90+12=180 | | (y+9)=115 |